Очистка сточных вод энергетических предприятий. Сточные воды тэс и их очистка. Очистка при помощи добавления реагентов

Варить, тушить 28.06.2021
Варить, тушить

Технологические циклы производства химических, металлургических, предприятий энергетики и оборонного комплекса используют, кроме основных материалов и сырья и обычную воду, играющую большую роль в технологии производства продукции. Большие объемы пресной воды, применяемые для приготовления растворов реагентов и в качестве вспомогательных операций охлаждения, имеют в своем составе просто огромное количество химических примесей и добавок, делающих такую воду опасной даже в виде промышленных стоков.

Проблему очистки таких вод, их использование в дальнейшем технологическом цикле или сброса в систему общей канализации сегодня вполне справляется оборудование химической очистки сточных вод, обеспечивающее не только подготовку воды к стандартам бытовых стоков, но и даже приводя очистку до норм очищенной пресной воды, пригодной для технического использования.

Основные методы химической очистки промышленных стоков

Химические методы проведения очистки промышленных стоков сегодня используются в основном для связывания и удаления из объема технической воды опасных химических элементов и приведения основных параметров таких стоков к нормам, позволяющим в дальнейшем провести обычную биологическую очистку.

Буквально в процессе такой очистки используются основные типы химических реакций:

  • Нейтрализация опасных соединений и элементов;
  • Окислительная реакция;
  • Реакция восстановления химических элементов.

В технологическом цикле очистных сооружений промышленных предприятий химическая очистка применима:

  • Для получения очищенной технической воды;
  • Очистке стоков производства от химических соединений перед сбросом в канализацию для дальнейшей биологической очистки;
  • Извлечения ценных химических элементов для дальнейшей переработки;
  • При проведении доочистки воды в отстойниках для сброса в открытые водоемы.

Химическая очистка сточных вод перед выбросом стоков в канализацию общего назначения, позволяет существенно повысить безопасность и ускорить процесс биоочистки.

Нейтрализация промышленных стоков

Большинство промышленных предприятий использующих химическую очистку промышленных стоков наиболее часто используют в своих очистных сооружениях и комплексах средства нейтрализации кислотных и щелочных показателей воды до приемлемых для дальнейшей обработке уровня кислотности 6,5– 8,5 (рН). Снижение или наоборот, повышение уровня кислотности стоков позволяет в дальнейшем использовать жидкость для технологических процессов поскольку такой показатель уже не является опасным для человека.

Доведенная до такого показателя воды может быть использована для технологических нужд предприятий, на вспомогательных производствах или для дальнейшей очистки с применением биологических средств.

Важно, что нормализация химическим путем воды проводимая на предприятиях эффективно обеспечивала нейтрализацию кислот и щелочей, растворенных в стоках, и не допускала их попадание в грунт и водоносные слои.

Превышение количества показателей кислот и щелочей в сбрасываемых отходах ведет к ускорению старения оборудования, коррозии металла трубопроводов и запорной арматуры, растрескиванию и разрушению железобетонных конструкций фильтровальных и очистительных станций.

В дальнейшем для нормализации кислотно-щелочного баланса отходов в отстойниках, резервуарах и на полях фильтрации необходимо больше времени на проведение биологической очистки на 25-50% времени больше чем нейтрализованных стоков.

Промышленные технологии нейтрализации жидких отходов

Проведение мероприятий химической очистки жидких отходов методом нейтрализации связана с выравниванием необходимого показателя уровня кислотности определенного объема сточных вод. Основными технологическими процессами, задействованными в нейтрализации, выступают:

  • определение уровня загрязнений химическими соединениями стоков;
  • расчет дозировки химических реагентов, необходимых для нейтрализации;
  • осветление воды до необходимого уровня норм для жидких отходов.

Подбор оборудования средств очистки, его расположение, подключение и работа зависит, прежде всего, от уровня загрязнения и необходимых объемов очистки сбросов.

В отдельных случаях для этого достаточно мобильных установок химической очистки, обеспечивающих очистку и нейтрализацию относительно небольшого количества жидкости из накопителя предприятия. А в отдельных случаях требуется применение постояннодействующей установки химической очистки и нейтрализации.

Основным видом технологического оборудования для таких станций выступает установки проточной очистки или контактного типа. Обе установки позволяют обеспечить:

  • контроль уровня загрязнения;
  • возможность использования в технологии схемы взаимной нейтрализации кислотного и щелочного компонентов;
  • возможность использования естественного процесса нейтрализации в технологических водоемах.

Технологические схемы химической очистки методом нейтрализации должны обеспечивать возможность изъятия или удаления из резервуаров очистки твердых, нерастворимых частиц осадка.

Вторым важным моментом работы очистительных установок выступает возможность своевременной корректировки необходимого количества и концентрации реагентов для реакции, в зависимости от уровня загрязнения.

Обычно в технологическом цикле применяется оборудование, имеющее несколько накопительных резервуаров, позволяющих обеспечить своевременный прием, хранение, смешивание и сброс стоков, доведенных до необходимой кондиции.

Химическая нейтрализация стоков смешиванием кислотной и щелочной составляющих

Использование метода нейтрализации стоков путем смешивания кислотных и щелочных составляющих позволяет, проводить контролируемую реакцию нейтрализации без использования дополнительных реагентов и химикатов. Контроль количества сбрасываемых сточных вод кислотного и щелочного составов позволяет своевременно проводить операции по аккумулированию обеих составляющих и дозирование при смешивании. Обычно для непрерывной работы очистных сооружений такого вида используется суточный объем сбросов. Каждый из видов отходов проверяется и в случае необходимости доводится до необходимой концентрации путем добавления объема воды или определения объема пропорции для реакции очистки. Непосредственно на установке очистки это проводится в накопительных и регулирующих резервуарах станции. Использование данного метода требует правильного химического анализа составляющих кислотной и щелочной составляющей, проведение залповой или многоступенчатой реакции нейтрализации. Для небольших предприятий использование такого метода может быть проведено как в локальных очистительных сооружениях цеха или участка, так и при помощи очистных предприятия в целом.

Очистка при помощи добавления реагентов

Метод очистки жидких отходов реагентами применяется в основном для очистки вод содержащих большое количество загрязнений одного вида, когда нормальное соотношение щелочной и кислотной составляющей в воде значительно в одну из сторон.

Чаще всего это необходимо когда загрязнение имеет ярко выраженный вид и очистка методом смешивания результатов не дает или же попросту из-за повышенной концентрации нерациональна. Единственным и наиболее надежным методом нейтрализации в таком случае выступает метод добавления реагентов – химикатов, вступающих в химическую реакцию.

В современных технологиях такой метод чаще всего используется для кислых сточных вод. Самым простым и эффективным методом нейтрализации кислоты обычно выступает использование местных химикатов и материалов. Простота и эффективность метода заключается в том, что отходы, например, доменного производства отлично нейтрализуют загрязнение серной кислотой, а шлак с тепловых электростанций и централей часто используется для добавления в резервуары с кислотными сбросами.

Использование местных материалов позволяет значительно удешевить процесс очистки, ведь шлак, мел, известняк, доломитовые породы отлично нейтрализуют большое количество сильнозагрязненных стоков.

Отходы доменного производства и шлак с тепловых электростанций и централей не требует дополнительной подготовки, кроме измельчения, пористая структура и наличие в составе многих соединений кальция, кремния и магния позволяют применять материалы без предварительной обработки.

Мел, известняк и доломит, используемые в качестве реагентов, в обязательном порядке проходят подготовку и измельчение. Кроме того, для очистки в некоторых технологических циклах используется подготовка жидких реагентов, например, с использованием извести и аммиачного раствора воды. В дальнейшем, аммиачная составляющая отлично помогает при процессе биологической очистки воды.

Метод окисления сточных вод

Метод окисления сточных вод дает возможность получать безопасные по своим характеристикам токсичности сточных вод в опасных химических производствах. Чаще всего окисление используется для получения стоков, которые не требуют дальнейшего извлечения твердых частиц, и могут быть сброшены в общую систему канализации. В качестве добавок используются окислители на основе хлора, это сегодня самый популярный материал для очистки.

Материалы на основе хлора, натрия и кальция озон и пероксид водорода используются в многоступенчатой технологии очистки стоков, при которой каждый новый этап позволяет значительно снижать токсичность, связывая опасные токсические вещества в нерастворимые соединения.

Установки окисления, имеющие многоступенчатые системы очистки делают этот процесс относительно безопасным, но применение таких токсичных окислителей, как хлор постепенно вытесняется более безопасными, но не менее эффективными методами окисления стоков.

К высокотехнологическим методам очистки стоков, относятся методы, использующие в своем технологическом цикле новые разработки, позволяющие при помощи специфического оборудования обеспечить очистку от вредных и ядовитых примесей широкого спектра загрязнителей.

Наиболее прогрессивным и перспективным методом очистки выступает метод озонирования стоков. Озон, при попадании в сточные воды воздействует как на органические так и на неорганические вещества, проявляя при этом широкий спектр действия. Озонирование сточных вод позволяет:

  • обесцветить жидкость, значительно повысив ее прозрачность;
  • проявляет обеззараживающий эффект;
  • практически полностью устраняет специфические запахи;
  • устраняет сторонние привкусы.

Озонирование применимо при загрязнении воды:

  • нефтепродуктами;
  • фенолами;
  • сероводородными соединениями;
  • цианидами и производными от них веществами;
  • канцерогенными углеводородами;
  • уничтожает пестициды;
  • обезвреживает поврехностно-активные вещества.

Вдобавок к этому практически полностью уничтожаются опасные микроорганизмы.

Технологически озонирование как метод очистки может быть реализован как в локальных очистных установках, так и в стационарных станциях очистки.

Использование различных методов химической очистки сточных вод приводит к снижению вредных и опасных для человека и экосистем выбросов веществ от 2 до 5 раз, и сегодня именно химическая очистка позволяет добиться наиболее высокой степени очистки воды.

Эксплуатация тепловых электрических станций связана с использованием большого количества воды. Основная часть воды (более 90%) расходуется в системах охлаждения различных аппаратов: конденсаторов турбин, масло- и воздухоохладителей, движущихся механизмов и др.

Сточной водой является любой поток воды, выводимый из цикла электростанции.

К сточным, или сбросным, водам кроме вод систем охлаждения относятся: сбросные воды систем гидрозолоулавливания (ГЗУ), отработавшие растворы после химических промывок теплосилового оборудования или его консервации: регенерационные и шламовые воды от водоочистительных (водоподготовительных) установок: нефтезагрязненные стоки, растворы и суспензии, возникающие при обмывах наружных поверхностей нагрева, главным образом воздухоподогревателей и водяных экономайзеров котлов, сжигающих сернистый мазут.

Составы перечисленных стоков различны и определяются типом ТЭС и основного оборудования, ее мощностью, видом топлива, составом исходной воды, способом водоподготовки в основном производстве и, конечно, уровнем эксплуатации.

Воды после охлаждения конденсаторов турбин и воздухоохладителей несут, как правило, только так называемое тепловое загрязнение, так как их температура на 8...10 С превышает температуру воды в водоисточнике. В некоторых случаях охлаждающие воды могут вносить в природные водоемы и посторонние вещества. Это обусловлено тем, что в систему охлаждения включены также и маслоохладители, нарушение плотности которых может приводить к проникновению нефтепродуктов (масел) в охлаждающую воду. На мазутных ТЭС образуются сточные воды, содержащие мазут.

Масла могут попадать в сточные воды также из главного корпуса, гаражей, открытых распредустройств, маслохозяйств.

Количество вод систем охлаждения определяется в основном количеством отработавшего пара, поступающего в конденсаторы турбин. Следовательно, больше всего этих вод на конденсационных ТЭС (КЭС) и АЭС, где количество воды (т/ч), охлаждающей конденсаторы турбин, может быть найдено по формуле Q=KW гдеW - мощность станции, МВт;К -коэффициент, для ТЭСК = 100...150: для АЭС 150...200.

На электростанциях, использующих твердое топливо, удаление значительных количеств золы и шлака выполняется обычно гидравлическим способом, что требует большого количества воды. На ТЭС мощностью 4000 МВт, работающей на экибастузском угле, сжигается до 4000 т/ч этого топлива, при этом образуется около 1600...1700 т/ч золы. Для эвакуации этого количества со станции требуется не менее 8000 м 3 /ч воды. Поэтому основным направлением в этой области является создание оборотных систем ГЗУ, когда освободившаяся от золы и шлака осветленная вода направляется вновь на ТЭС в систему ГЗУ.

Сбросные воды ГЗУ значительно загрязнены взвешенными веществами, имеют повышенную минерализацию и в большинстве случаев повышенную щелочность. Кроме того, в них могут содержаться соединения фтора, мышьяка, ртути, ванадия.

Стоки после химической промывки или консервации теплосилового оборудования весьма разнообразны по своему составу вследствие обилия промывочных растворов. Для промывок применяются соляная, серная, плавиковая, сульфаминовая минеральные кислоты, а также органические кислоты: лимонная, ортофталевая, адипиновая, щавелевая, муравьиная, уксусная и др. Наряду с ними используются трилон Б, различные ингибиторы коррозии, поверхностно-активные вещества, тиомочевина, гидразин, нитриты, аммиак.

В результате химических реакций в процессе промывок или консервации оборудования могут сбрасываться различные органические и неорганические кислоты, щелочи, нитраты, соли аммония, железа, меди, трилон Б, ингибиторы, гидразин, фтор, уротропин, каптакс и т. д. Такое разнообразие химических веществ требует индивидуального решения нейтрализации и захоронения токсичных отходов химических промывок.

Воды от обмывки наружных поверхностей нагрева образуются только на ТЭС, использующих в качестве основного топлива сернистый мазут. Следует иметь в виду, что обезвреживание этих обмывочных растворов сопровождается получением шламов, содержащих ценные вещества - соединения ванадия и никеля.

При эксплуатации водоподготовки обессоленной воды на ТЭС и АЭС возникают стоки от склада реагентов, промывок механических фильтров, удаления шламовых вод осветлителей, регенерации ионитовых фильтров. Эти воды несут значительное количество солей кальция, магния, натрия, алюминия, железа. Например, на ТЭЦ, имеющей производительность химводоочистки 2000 т/ч, сбрасывается солей до 2,5 т/ч.

С предочистки (механические фильтры и осветлители) сбрасываются нетоксичные осадки - карбонат кальция, гидрооксид железа и алюминия, кремнекислота, органические вещества, глинистые частицы.

И, наконец, на электростанциях, использующих в системах смазки и регулирования паровых турбин огнестойкие жидкости типа иввиоль или ОМТИ, образуется небольшое количество сточной воды, загрязненной этим веществом.

Основным нормативным документом, устанавливающим систему охраны поверхностных вод, служат «Правила охраны поверхностных вод (типовое положение)» (М.: Госкомприроды, 1991г.).

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru

Контрольная работа

По Отраслевой экологии

Вариант 3

1. ОБРАЗОВАНИЕ ВРЕДНЫХ ВЫБРОСОВ И ОТХОДОВ НА ПРЕДПРИЯТИЯХ МЕТАЛЛООБРАБОТКИ

1.1 Технологические процессы и оборудование - источники образования выбросов

сточный промышленный выброс загрязнение

Современное машиностроение развивается на базе крупных производственных объединений, включая заготовительные и кузнечные цехи, термической обработки, механической обработки, цехи покрытий и крупное литейное производство. В состав предприятия входят испытательные станции, ТЭЦ и вспомогательные подразделения. Используются сварочные работы, механическая обработка металла, переработка неметаллических материалов, лакокрасочные операции.

Литейные цехи.

Наиболее крупными источниками пыле- и газовыделений в атмосферу в литейных цехах являются: вагранки, электродуговые и индукционные печи, участки складирования и переработки шихты и формовочных материалов, участки выбивки и очистки литья.

В современных чугунолитейных цехах в качестве плавильных агрегатов применяют водоохлаждаемые вагранки закрытого типа, индукционные тигельные печи повышенной и промышленной частоты, дуговые печи типа ДЧМ, установки электрошлакового переплава, вакуумные печи различных конструкций и т.п.

Выбросы загрязняющих веществ при плавке металлов зависят от двух составляющих:

состава шихты и степени ее загрязнения;

от выбросов самих плавильных агрегатов в зависимости от используемых видов энергии (газ, кокс и т.п.) и технологии плавки.

По вредному воздействию на человека и окружающую среду пыль делят на 2 группы:

минерального происхождения;

аэрозоли паров металлов.

Высокую опасность представляют собой пыли минерального происхождения, содержащие диоксид кремния (), а также оксиды хрома (VI) и марганца, которые являются канцерогенными веществами.

Мелкодисперсная пыль является аэрозолью. По степени дисперсности аэрозоли делятся на 3 категории:

грубая: 0,5 мкм и более (визуально);

коллоидная: 0,05 - 0,5 мкм (с помощью приборов);

аналитическая: менее 0,005 мкм.

В литейном производстве имеют дело с грубой и коллоидной аэрозолями.

Диоксид кремния вызывает развитие силикоза, заболевание является профессиональным в формовочном отделении литейного цеха.

Ряд металлов вызывает «литейную лихорадку» (Zn, Ni, Cu, Fe, Co, Pb, Mn, Be, Sn, Sb, Cd и их оксиды). Некоторые металлы (Cr, Ni, Be, As и др.) обладают канцерогенным действием, т.е. вызывают раковые заболевания органов.

Многие металлы (Hg, Co, Ni, Cr, Pt, Be, As, Au, Zn и их соединения) вызывают аллергические реакции организма (бронхиальную астму, некоторые заболевания сердца, поражения кожи, глаз, носа и др.). В табл. 1 представлены ПДК для ряда металлов.

Таблица 1 - Предельно допустимые концентрации металлов

Модификации вагранок различаются типом дутья, видом используемого топлива, конструкцией горна, шахты, колошника. Это определяет состав исходных и конечных продуктов плавки, а следовательно, количество и состав отходящих газов, их запыленность.

В среднем при работе вагранок на каждую тонну чугуна приходиться 1000 м3 выбрасываемых в атмосферу газов, содержащих 3...20 г/м3 пыли: 5...20 % оксида углерода; 5... 17 % углекислого газа; до 2 % кислорода; до 1,7 % водорода; до 0,5 % сернистого ангидрида; 70...80 % азота.

Значительно меньшее количество выбросов из вагранок закрытого типа. Так, в дымовых газах отсутствует окись углерода, а к.п.д. очистки от взвешенных частиц достигает 98.. .99 %. В результате обследования вагранок горячего и холодного дутья был установлен диапазон значений дисперсного состава пыли в ваграночных газах.

Ваграночная пыль отличается широким спектром дисперсности, но основу выбросов составляют высокодисперсные частицы. Химический состав ваграночной пыли различен и зависит от состава металлозавалки, шихты, состояния футеровки, вида топлива, условий работы вагранки.

Химический состав пыли в процентах от массовой доли: SiO2 - 20 -50%; CaO - 2 - 12 %; A2O3 - 0.5 - 6%; (FeO+F2O3) - 10 -36 %; C - 30 - 45%.

При выпуске чугуна из вагранки в заливочные ковши выделяется 20 г/т графитовой пыли и 130 г/т оксида углерода; из других плавильных агрегатов вынос газов и пыли менее значителен.

В процессе эксплуатации газовой вагранки (ГВ) выявлены следующие их преимущества перед коксовыми вагранками:

возможность стабильно выплавлять чугуны широкого диапазона с различным содержанием С и низким содержанием S, в том числе и ЧШГ;

выплавленный чугун имеет перлитную структуру с большой
дисперсностью металлической матрицы, обладает меньшим эвтектическим зерном и величиной графитных включений;

механические свойства чугуна, полученного в ГВ, выше; его чувствительность к изменению толщины стенки меньше; обладает хорошими литейными свойствами при явной тенденции к уменьшению суммарного объема усадочных пустот и преобладанию концентрированной усадочной раковины;

в условиях трения со смазкой чугун имеет большую износостойкость;

выше его герметичность;

в ГВ возможно применять до 60% стального лома и иметь температуру чугуна до 1530°С 3,7...3,9%С;

одна ГВ может работать без ремонта 2... 3 недели;

экологическая ситуация при переходе с кокса на природный газ изменяется: выделение пыли в атмосферу уменьшается в 5-20 раз, содержание СО - в 50 раз, SO2 - в 12 раз.

Сравнительно большой выход технологических газов наблюдается при плавке стали в электродуговых печах. В данном случае состав газов зависит от периода плавки, марки выплавляемой стали, герметичности печи, способа газоотсоса и наличия кислородной продувки. Принципиальными преимуществами плавки металла в электродуговых печах (ЭДП) являются невысокие требования к качеству шихты, к размерам и конфигурации кусков, что снижает стоимость шихты, высокое качество выплавленного металла. Расход энергии колеблется от 400 до 800 кВт-ч/т, в зависимости от размеров и конфигурации шихты, необходимой температуры жидкого металла, его химсостава, стойкости огнеупорной футеровки, метода рафинирования, типа установок для пыле- и газоочистки.

Источники выделений при плавке в ЭДП можно разделить на три категории: шихта; выбросы, образующиеся в процессе плавления и рафинирования; выбросы при выпуске метала из печи.

Отбор проб пылевыделений из 23 ЭДП в США и их анализ активационным и атомно-адсорбционным методами на 47 элементов показал наличие в них цинка, циркония, хрома, железа, кадмия, молибдена и вольфрама. Количество других элементов было ниже предела чувствительности методов. По данным американских и французских изданий количество выделений из ЭДП колеблется от 7 до 8 кг на тонну металлической шихты при нормальном ведении плавки. Есть сведения, что эта величина может возрастать до 32 кг/т, в случае загрязненной шихты. Отмечается линейная зависимость между скоростями выделения и обезуглероживания. При выгорании 1% С в минуту выделяется 5 кг/мин пыли и газа на каждую тонну обрабатываемого металла. При рафинировании расплава железной рудой количество выделений и время, в течение которого происходит это выделение, заметно выше, чем при рафинировании кислородом. Поэтому с экологической точки зрения при установке новых и реконструкции старых ЭДП целесообразно предусматривать продувку кислородом для рафинирования металла.

Отходящие газы из ЭДП в основном состоят из монооксида углерода, образующегося в результате окисления электродов и удаления углерода из расплава при продувке его кислородом или добавке железной руды. Каждый м3 кислорода формирует 8-10 м3 отходящих газов, и в этом случае 12-15 м3 газов должно пройти через систему очистки. Наивысшая скорость выделения газов отмечается при продувке металла кислородом.

Основной составляющей пыли при плавке в индукционных печах (60 %) являются окислы железа, остальное - окислы кремния, магния, цинка, алюминия в различном соотношении в зависимости от химического состава металла и шлака. Выделяемые при плавке чугуна в индукционных печах частицы пыли имеют дисперсность от 5 до 100 мкм. Количество газов и пыли в 5...6 раз меньше, чем при плавке в электродуговых печах.

Таблица 2 - Удельное выделение загрязняющих веществ (q, кг/т) при выплавке стали и чугуна в индукционных печах

При литье, из формовочных смесей под действием теплоты жидкого металла, выделяются: бензол, фенол, формальдегид, метанол и другие токсичные вещества, которые зависят от состава формовочных, смесей, массы и способа получения отливки и других факторов.

От участков выбивки на 1 м2 площади решетки выделяется 46 - 60 кг/ч пыли, 5 - 6 кг/ч СО, до 3 кг/ч аммиака.

Значительные выделения пыли наблюдаются на участках очистки и обрубки литья, участке приготовления и переработке шихты, формовочных материалов. На стержневых участках - средние газообразные выделения.

Кузнечно-прессовые и прокатные цехи.

В процессах нагрева и обработки металла в кузнечно-прессовых и прокатных цехах выделяется пыль, кислотный и масляный аэрозоль (туман), оксид углерода, диоксид серы и др.

В прокатных цехах выброс пыли составляет приблизительно 200 г/т проката. Если применяется огневая зачистка поверхности заготовки, то выход пыли возрастает до 500 - 2000 г/т. При этом, в процессе сгорания поверхностного слоя металла образуется большое количество мелкодисперсной пыли, на 75 - 90% состоящей из оксидов железа. Для удаления окалины с поверхности горячекатанной полосы применяют травление в серной или соляно кислоте. Среднее содержание кислоты в удаляемом воздухе составляет 2.5 - 2.7 г/м3. Общеобменной вентиляцией кузнечно-прессового цеха в атмосферу выбрасываются оксиды углерода и азота, диоксид серы.

Термические цехи.

Воздух, выбрасываемый из термических цехов, загрязнен парами и продуктами горения масла, аммиаком, цианистым водородом и другими веществами поступающими в систему вытяжной вентиляции от ванн и агрегатов для термообработки. Источниками загрязнения являются нагревательные печи, работающие на жидком и газообразном топливе, а также дробеструйная и дробеметная камеры. Концентрация пыли достигает 2 - 7 г/м3.

При закалке и отпуске деталей в масляных ваннах в отводимом от ванн воздухе содержится до 1% паров масла от массы металла.

Цехи механической обработки.

Механическая обработка металлов на станках сопровождается выделением пыли, стружки, туманов (капли жидкости размером 0.2 - 1.0 мкм, дымы - 0.001 - 0.1 мкм, пыль - > 0.1 мкм). Пыль, образующаяся в процессе абразивной обработки, состоит на 30 - 40% из материала абразивного круга и на 60 - 70% из материала обрабатываемого изделия.

Значительные выделения пыли наблюдаются при механической обработке древесины, стеклопластиков, графита и других неметаллических материалов.

При механической обработке полимерных материалов одновременно с пылеобразованием могут выделяться пары химических веществ и соединений (фенол, формальдегид, стирол), которые входят в состав обрабатываемых материалов.

Сварочные цехи.

Состав и масса выделяемых вредных веществ зависит от вида и режимов техпроцесса, свойств применяемых материалов. наибольшие выделения вредных веществ характерны для процесса ручной электродуговой сварки. При расходе 1 кг электродов в процессе ручной дуговой сварки стали образуется до 40 г пыли, 2 г фтористого водорода, 1.5 г оксидов С и N, в процессе сварки чугунов - до 45 г пыли и 1.9 г фтористого водорода. При полуавтоматической и автоматической сварке масса выделяемых вредных веществ < в 1.5 - 2.0 раза, а при сварке под флюсом - в 4-6 раз.

Анализ состава загрязнений, выбрасываемых в атмосферу машиностроительным предприятием показывает, что кроме основных примесей (СО, SO2, NOx, CnHm, пыль) в выбросах содержатся и другие токсичные соединения, которые почти всегда оказывают отрицательное воздействие на окружающую среду. Концентрация вредных выбросов в вентиляционных выбросах часто невелика, но из-за больших объемов вентиляции воздуха валовые количества вредных веществ весьма значительны.

1.2 Количественные характеристики выбросов от основного технологического оборудования. Расчет экологического налога

Качественными характеристиками выбросов загрязняющих веществ являются химический состав веществ и класс их опасности.

К количественным характеристикам относятся: валовый выброс загрязняющих веществ в тоннах в год (QB), значение максимального выброса загрязняющих веществ в граммах в секунду (QМ). Расчет валового и максимального выбросов проводят при:

Оценке воздействия на окружающую среду;

Разработке проектной документации на строительство, реконструкцию, расширение, техническое перевооружение, модернизацию, изменение профиля производства, ликвидацию объектов и комплексов;

Инвентаризации выбросов загрязняющих веществ в атмосферный воздух;

Нормировании выбросов загрязняющих веществ в атмосферный воздух;

Установлении объемов разрешенных (лимитируемых) выбросов загрязняющих веществ в атмосферный воздух;

Контроле за соблюдением установленных норм выбросов загрязняющих веществ в атмосферный воздух;

Ведении первичного учета о воздействии на атмосферный воздух;

Ведении отчетности о выбросах загрязняющих веществ;

Исчислении и уплате экологического налога;

При выполнении иных мероприятий по охране атмосферного воздуха.

Расчет ведется в соответствии с руководящим документом "Расчет выбросов загрязняющих веществ в атмосферный воздух при горячей обработке металлов" - РД 0212.3-2002. РД разработан лабораторией "НИЛОГАЗ" БГПА, утвержден и введен в действие постановлением Министерства природных ресурсов и охраны окружающей среды РБ № 10 от 28 мая 2002 г.

РД предназначен для выполнения ориентировочных расчетов ожидаемых выбросов в атмосферу загрязняющих веществ от основного технологического оборудования предприятий отрасли. В основу расчета положены удельные выбросы загрязняющих веществ от единицы технологического оборудования, планируемые или отчетные показатели основной деятельности предприятия; нормы расхода основных и вспомогательных материалов, графики и нормо-часы работы оборудования, степень очистки пылегазоочистных установок. РД позволяет осуществлять годовое и перспективное планирование объемов выбросов, а также намечать пути их сокращения.

2. ОБРАЗОВАНИЕ ПРИМЕСЕЙ СТОЧНЫХ ВОД

2.1 Общие сведения

Запасы воды на планете колоссальны - около 1,5 млрд км3, однако объем пресных вод составляет немногим > 2%, при этом 97% их представлено ледниками в горах, полярными льдами Арктики и Антарктики, которая не доступны для использования. Объем пригодных для применения пресных вод составляет 0,3% от общего запаса гидросферы. В настоящее время населением мира ежесуточно потребляем 7 млрд.т. воды, что соответствует количеству полезных ископаемых, добываемых человечеством за год.

С каждым годом потребление воды резко увеличивается. На территории промышленных предприятий образуется сточные воды 3-х типов: бытовые, поверхностные, производственные.

Хозяйственно-бытовые сточные воды - образуются при эксплуатации на территории предприятий душевых, туалетов, прачечных и столовых. Предприятие не отвечает за количество данных сточных вод и направляет их на городские станции очистки.

Поверхностные сточные воды образуются в результате смывания дождевой поливочной водой примесей, скапливающие на территории, крышах и стенах производственных зданий. Основными примесями этих вод являются твердые частицы (песок, камень, стружки и опилки, пыль, сажа, остатки растений, деревьев и т.п.); нефтепродукты (масла, бензин и керосин), используемый в двигателях транспортных средств, а так же органических и минеральных удобрений, используемых в заводских скверах и цветниках. Каждое предприятие отвечает за загрязнение водоемов, поэтому необходимо знать объем сточных вод данного типа.

Расход поверхностных сточных вод рассчитывается в соответствии со СН и П2.04.03-85 «Нормы проектирования. Канализация. Наружные сети и сооружения» по методу предельной интенсивности. Для каждого сечения водостока расчетный расход определяют по формуле:

где - параметр, характеризующий интенсивность осадков в зависимости от климатических особенностей местности, где расположено предприятие;

Расчетная площадь стока.

Площадь территории предприятия

Коэффициент зависящий от площади;

Коэффициент стока, определяющий в зависящий от проницаемости поверхности;

Коэффициент стока, учитывающий особенности процессов сбора поверхностных сточных вод и движения их в лотках и коллекторах.

Производственные сточные воды образуются в результате использования воды в технологических процессах. Их количество, состав, концентрация примесей определяется типом предприятия, его мощностью, видами используемых технологических процессов. Для покрытия нужд водопотребления предприятиями области производится забор воды из поверхностных источников предприятиями промышленности и теплоэнергетики, сельскохозяйственными объектами водопользования, в основном на цели орошения.

В хозяйстве Республики Беларусь используются водные ресурсы рек: Днепр, Березина, Сож, Припять, Уборть, Случь, Птичь, Уть, Немыльня, Терюха, Уза, Виша.

Из артезианских скважин забирается приблизительно 210 млн. м3/ год, причем вся эта вода - питьевая.

Общий объем сточных вод образует за год около 500 млн. м3. Около 15% стоков являются загрязненными (недостаточно очищенными). В Гомельской области загрязнено около 30 рек и речек.

Особые виды промышленного загрязнения водоемов:

1) тепловое загрязнение, обусловленное выпуском тепловых вод от различных энергетических установок. Тепло, поступающее с нагретыми сбросными водами в реки, озера и искусственные водохранилища, оказывает существенное влияние на термический и биологический режим водоемов.

Интенсивность влияния теплового загрязнения зависит от t нагревания воды. Для лета выявлена следующая последовательность воздействия температуры воды на биоценоз озер и искусственных водоемов:

при t до 26 0С не наблюдается вредного воздействия

свыше 300С - вредное воздействие на биоценоз;

при 34-36 0С возникает летальные условия для рыб и др. организмов.

Создание различных охладительных устройств для сброса вод тепловых электростанций при огромном расходе этих вод приводит к значительному удорожанию строительства и эксплуатации ТЭС. В связи с этим изучению влиянию теплового загрязнения уделяется большое внимание. (Владимиров Д.М., Ляхин Ю.И., Охрана окружающей среды ст. 172-174);

2) нефть и нефтепродукты (пленка) - разлагаются за 100-150 дней при благоприятныхных условиях;

3) синтетические моющие средства - трудноудалимы из стоков, увеличивают содержание фосфатов, что ведет к увеличению растительности, цветению водоемов, истощению кислорода в водной массе;

4) сброс Zu и Cu - не удаляются полностью, а меняются формы соединения и скорость миграции. Только за счет разбавление можно снизить концентрацию.

Вредное воздействие машиностроения на поверхностные воды обусловлено большим водопотреблением (около 10 % общего водопотребления в промышленности) и значительным загрязнением стоков, которые подразделяются на пять групп:

с механическими примесями, в том числе и гидроксидами металлов; с нефтепродуктами и эмульсиями, стабилизированными ионогенными эмульгаторами; с летучими нефтепродуктами; с моющими растворами и эмульсиями, стабилизированными неионогенными эмульгаторами; с растворенными токсичными соединениями органического и минерального происхождения.

На первую группу приходится 75 % объема сточных вод, вторую, третью и четвертую - еще 20 %, пятую группу - 5 % объема.

Основным направлением в рациональном использовании водных ресурсов являются оборотное водоснабжение.

2.2 Сточные воды машиностроительных предприятий

Литейные цехи. Вода используется на операциях гидравлической выбивки стержней, транспортировки и промывки формовочной земли в отделения регенерации, на транспорт отходов горелой земли, при орошении газоочистного оборудования, охлаждении оборудования.

Сточные воды загрязняются глиной, песком, зольными остатками от выгоревшей части стержней смеси и связующими добавками формовочной смеси. Концентрация этих веществ может достигать 5 кг/м3.

Кузнечно-прессовые и прокатные цехи. Основными примесями сточных вод, используемых для охлаждения технологического оборудования, поковок, гидросбива металлической окалины и обработки помещения, являются частицы пыли, окалины и масла.

Механические цехи. Вода используемая для приготовления смазочно-охлаждаемых жидкостей, промывки окрашиваемых изделий, для гидравлических испытаний и обработки помещения. Основные примеси - пыль, металлические и абразивные частицы, сода, масла, растворители, мыла, краски. Количество шлама от одного станка при черновом шлифовании 71,4 кг/ч, при чистовом - 0,6 кг/ч.

Термические участки: Для приготовления технологических растворов, используемых для закалки, отпуске и отжиге деталей, а так же для промывки деталей и ванн после сброса отработанных растворов используют воду. Примеси сточных вод - минерального происхождения, металлическая окалина, тяжелые масла и щелочи.

Участки травления и гальванические участки. Вода используемая для приготовления технологических растворов, применяемая при травлении материалов и нанесение на них покрытий, для промывки деталей и ванн после сброса отработанных растворов и обработки помещения. Основные примеси - пыль, металлическая окалина, эмульсии, щелочи и кислоты, тяжелые масла.

В сварочных, монтажных, сборочных цехах машиностроительных предприятий сточные воды содержат металлические примеси, маслопродукты, кислоты и т.п. в значительно меньших количествах, чем в рассмотренных цехах.

Степень загрязненности сточных вод характеризуется следующими основными физико-химические показателями:

количеством взвешенных веществ, мг/л;

биохимическим потреблением кислорода, мг/л O2/л; (БПК)

Химическим потреблением кислорода, мг/л (ХПК)

Органолептическими показателями (цвет, запах)

Активной реакцией среды, рН.

ЛИТЕРАТУРА

1. Акимова Т.В. Экология. Человек-Экономика-Биота-Среда: Учебник для студентов вузов/ Т.А.Акимова, В.В.Хаскин; 2-е изд., перераб. и дополн.- М.:ЮНИТИ, 2006.- 556 с

2. Акимова Т.В. Экология. Природа-Человек-Техника.: Учебник для студентов техн. направл. и специал. вузов/ Т.А.Акимова, А.П.Кузьмин, В.В.Хаскин - М.:ЮНИТИ-ДАНА, 2006.- 343 с

3. Бродский А.К. Общая экология: Учебник для студентов вузов. М.: Изд. Центр «Академия», 2006. - 256 с.

4. Воронков Н.А. Экология: общая, социальная, прикладная. Учебник для студентов вузов. М.: Агар, 2006. - 424 с.

5. Коробкин В.И. Экология: Учебник для студентов вузов/ В.И. Коробкин, Л.В.Передельский. -6-е изд., доп. И перераб.- Ростон н/Д: Феникс, 2007.- 575с.

6. Николайкин Н.И., Николайкина Н.Е., Мелехова О.П. Экорлогия. 2-е изд.Учебник для вузов. М.: Дрофа, 2007. - 624 с.

7. Стадницкий Г.В., Родионов А.И. Экология: Уч. пособие для стут. химико-технол. и техн. сп. вузов./ Под ред. В.А.Соловьева, Ю.А.Кротова.- 4-е изд., испр. - СПб.: Химия, 2006. -238с.

8. Одум Ю. Экология. - М.: Наука,2006.

9. Чернова Н.М. Общая экология: Учебник для студентов педагогических вузов/ Н.М.Чернова, А.М.Былова. - М.: Дрофа, 2008.-416 с.

10. Экология: Учебник для студентов высш. и сред. учеб. заведений, обуч. по техн. спец. и направлениям/Л.И.Цветкова, М.И.Алексеев, Ф.В.Карамзинов и др.; под общ. ред. Л.И.Цветковой. М.: АСБВ; СПб.: Химиздат, 2007.- 550 с.

11. Экология. Под ред. проф.В.В.Денисова. Ростов-н/Д.: ИКЦ «МарТ», 2006. - 768 с.

Размещено на Allbest.ru

Подобные документы

    Источники загрязнения внутренних водоемов. Методы очистки сточных вод. Выбор технологической схемы очистки сточных вод. Физико-химические методы очистки сточных вод с применением коагулянтов. Отделение взвешенных частиц от воды.

    реферат , добавлен 05.12.2003

    Санитарно-гигиеническое значение воды. Характеристика технологических процессов очистки сточных вод. Загрязнение поверхностных вод. Сточные воды и санитарные условия их спуска. Виды их очистки. Органолептические и гидрохимические показатели речной воды.

    дипломная работа , добавлен 10.06.2010

    Загрязнение окружающей среды предприятиями металлургической отрасли. Влияние металлургических предприятий на атмосферный воздух и сточные воды. Определение и виды промышленных сточных вод и способы их очистки. Санитарная охрана атмосферного воздуха.

    курсовая работа , добавлен 27.10.2015

    Снижение биосферных функций водоемов. Изменение физических и органолептических свойств воды. Загрязнение гидросферы и его основные виды. Основные источники загрязнения поверхностных и подземных вод. Истощение подземных и поверхностных вод водоемов.

    контрольная работа , добавлен 09.06.2009

    Загрязнения, содержащиеся в бытовых сточных водах. Биоразлагаемость как одно из ключевых свойств сточных вод. Факторы и процессы, оказывающие влияние на очистку сточных вод. Основная технологическая схема очистки для сооружений средней производительности.

    реферат , добавлен 12.03.2011

    Характеристика бытовых, производственных и атмосферных сточных вод. Определение основных элементов системы водоотведения (общесплавных, комбинированных) городов и промышленных предприятий, проведение их экологической и технико-экономической оценок.

    реферат , добавлен 14.03.2010

    Состав и классификация пластических масс. Сточные воды производств суспензионных полистиролов и сополимеров стирола. Сточные воды производства фенолоформальдегидных смол. Классификация методов их очистки. Очистка сточных вод после производства каучуков.

    курсовая работа , добавлен 27.12.2009

    Охрана поверхностных вод от загрязнения. Современное состояние качества воды в водных объектах. Источники и возможные пути загрязнения поверхностных и подземных вод. Требования к качеству воды. Самоочищение природных вод. Охрана воды от загрязнения.

    реферат , добавлен 18.12.2009

    Предприятие АО "Осколцемент" как источник загрязнения водных объектов. Технологический процесс производства цемента. Вероятные загрязняющие вещества, которые могут попадать в сточные воды. Расчеты предельно-допустимых концентраций загрязняющих веществ.

    курсовая работа , добавлен 22.12.2011

    Краткая характеристика деятельности ООО "Уралхимтранс". Основные источники загрязнения и оценка экологического воздействия предприятия на окружающую среду: сточные воды, отходы производства. Природоохранные мероприятия для снижения уровня загрязнения.

Данная статья несет ознакомительную информацию. Компания Квант Минерал разделяет не все положения данной статьи.

Классификация промышленных сточных вод

Так как на различных предприятиях используются разнообразные технологии, то и перечень вредных веществ, попадающих в ходе технологических процессов в промышленные воды, очень различается.

Принято условное деление промышленных стоков на пять групп по видам загрязнений. при данном классификации различается в пределах одной и той же группы, а за систематизирующий признак взято сходство используемых технологий очистки:

  • группа 1: примеси в виде взвешенных веществ, механические примеси, в т.ч. гидроксиды металлов.
  • группа 2: примеси в виде масляных эмульсий, нефтесодержащие примеси.
  • группа 3: примеси в виде летучих веществ.
  • группа 4: примеси в виде моющих растворов.
  • группа 5: примеси в виде растворов органических и неорганических веществ, обладающих токсичными свойствами (цианиды, соединения хрома, ионы металлов).

Методы очистки промышленных стоков

Для удаления загрязняющих веществ из промышленных сточных вод разработано несколько методов. Выбор в каждом конкретном случае осуществляется, основываясь на и требуемом качественном составе очищенной воды. Так как в некоторых случаях загрязняющие компоненты относятся к различным видам, то для таких условий целесообразно применение комбинированных методов очистки.

Методы очистки производственных стоков от нефтепродуктов и взвешенных веществ

Для очистки промышленных стоков первых двух групп наиболее часто используется отстаивание, для чего могут применяться отстойники или гидроциклоны. Также в зависимости от количества механических примесей, размера взвешенных частиц и требований к очищенной воде в очистных сооружениях осуществляется флотация и . При этом следует учитывать, что некоторые виды взвешенных примесей и масел обладают полидисперсными свойствами.

Несмотря на то, что отстаивание является широко используемым методом очистки, оно обладает рядом недостатков. Отстаивание промышленных стоков для получения хорошей степени очистки, как правило, требует очень продолжительного времени. Хорошими показателями очистки при отстаивании считаются 50-70% и масел и 50-60% очистки для взвешенных веществ.

Более эффективным методом осветления сточных вод является флотация. Флотационные установки позволяют значительно сократить время очистки стоков, при этом степень очистки для загрязнений нефтепродуктами и механическими примесями достигает показателя в 90-98%. Такая высокая степень очищения получается при флотации в течение 20-40 минут.

На выходе из флотационных установок количество взвешенных частиц в воде составляет около 10-15 мг/л. В тоже время это не соответствует требованиям, предъявляемым для оборотных вод ряда промышленных предприятий, и требованиям экологического законодательства для сброса промстоков на рельеф. Для более качественного удаления загрязняющих факторов из производственных стоков на очистных станциях используют фильтры. Фильтрующим наполнителем выступает пористый, либо мелкозернистый материал, например, кварцевый песок, антрацит. В фильтровальных установках последних модификаций часто применяются наполнители из пеноуретанов и пенополистиролов, которые обладают большей емкостью и способны многократно регенерировать для повторного использования.

Реагентный метод

Фильтрование, флотация и отстаивание позволяют удалять из сточных вод механические примеси от 5 мкм и больше, удаление более мелких частиц можно осуществить только после предварительной . Добавление в промышленные стоки коагулянтов и флокулянтов вызывает образование хлопьев, которые в процессе осаждения вызывают сорбацию взвешенных веществ. Некоторые виды флокулянтов ускоряют процесс самокоагуляции частиц. Наиболее распространены в качестве коагулянтов хлорное железо, сернокислый алюминий, железный купорос, в качестве флокулянтов – полиакриламид и активированная кремниевая кислота. В зависимости от технологических процессов, применяемых на основном производстве, для флокуляции и коагуляции можно использовать образующиеся на предприятии вспомогательные вещества. Таким примером может служить применение в машиностроительной отрасли отработанных травильных растворов, содержащих сульфат железа.

Реагентная обработка увеличивает показатели очистки сточных вод промышленного предприятия до 100% от механических примесей (включая мелкодисперсные), и до 99,5% от эмульсий и нефтепродуктов. Минусом данного метода является усложнение обслуживания и эксплуатации очистной станции, поэтому на практике он применяется только в случаях повышенных требований к качеству очистки стоков.

На сталелитейных производствах взвешенные вещества в сточных водах могут более чем на половину состоять из железа и его оксидов. Такой состав промышленной воды позволяет использовать для очистки безреагентную коагуляцию. В данном случае коагуляция загрязняющих железосодержащих частиц будет осуществляться за счет магнитного поля. Очистные станции на таком производстве представляют собой комплекс из магнитокоагулятора, магнитных фильтров, магнитных фильтроциклонов и прочих установок с магнитным принципом действия.

Методы очистки промышленных стоков от растворенных газов и ПАВ

Третья группа промышленных стоков представляет собой растворенные в воде газы и летучие органические вещества. Удаление их из сточных вод осуществляется методом отдувки или десорбции. Данный метод заключается в пропускании через жидкость мелких пузырьков воздуха. Поднимающиеся к поверхности пузырьки захватывают с собой растворенные газы и удаляют их из стоков. Барботирование воздуха через промышленные сточные воды не требует специальных дополнительных устройств, кроме самой барботажной установки, а утилизация освобожденных газов может осуществляться, например, . В зависимости от количества отработанного газа в ряде случаев целесообразно его сжигание в каталитических установках.

Для очистки стоков, содержащих моющие вещества, применяется комбинированный метод очистки. Этот могут быть:

  • адсорбция на инертных материалах или природных сорбентах,
  • ионный обмен,
  • коагуляция,
  • экстракция,
  • пенная сепарация,
  • деструктивное разрушение,
  • химическое осаждение в виде нерастворимых соединений.

Комбинация используемых способов удаления загрязнений из воды подбирается по составу исходных стоков и требованиям к очищенным стокам.

Методы очистки растворов органических и неорганических веществ, обладающих токсичными свойствами

В большинстве своем стоки пятой группы образуются на гальванических и травильных линияхи представляют собой концентраты солей, щелочей, кислот и промывной воды с различными показателями кислотности. Сточные воды такого состава на очистных установках подвергаются реагентной обработке с тем, чтобы:

  1. понизить кислотность,
  2. понизить щелочность,
  3. коагулировать и осадить соли тяжелых металлов.

В зависимости от мощностей основного производства концентрированные и разбавленные растворы могут либо смешивать, а затем нейтрализовать и осветлять (малые травильные отделения), либо в крупных травильных отделениях производить раздельную нейтрализацию и осветление растворов различной .

Нейтрализация кислых растворов обычно выполняется 5-10%-ным раствором гашеной извести, при этом происходит образование воды и выпадение осадка нерастворимых солей и гидроксидов металлов:

Кроме гашеной извести в качестве нейтрализатора могут использоваться щелочи, сода, аммиачная вода, но их применение целесообразно только, если они образуются в качестве отходов на данном предприятии. Как видно из уравнений реакций, при нейтрализации сернокислотных стоков гашеной известью образуется гипс. Гипс имеет свойство оседать на внутренних поверхностях трубопроводов и вызывать тем самым сужение проходного отверстия, особенно подвержены этому трубопроводы из металла. В качестве профилактики в такой ситуации возможно производить очистку труб промывкой, а также использовать трубопроводы из полиэтилена.

Подразделяют не только по показателю кислотности, но и по их химическому составу. В данной классификации выделяется три группы:

Такое разделение обусловлено специфичными технологиями очистки стоков в каждом случае.

Очистка хромсодержащих стоков

Сульфат железа – очень дешевый реагент, поэтому в прошлые годы такой способ обезвреживания был очень распространен. В тоже время хранение сульфата железа (II) очень затруднительно, так как он быстро окисляется до сульфата железа (III), поэтому рассчитать правильную дозировку для очистной установки тяжело. Это один из двух недостатков данного способа. Вторым недостатком является большое количество осадков в данной реакции.

Современные используют газ – диоксид серы, либо сульфиты. Протекающие при этом процессы описываются следующими уравнениями:

На скорость данных реакций влияет pH раствора, чем выше кислотность, тем быстрее восстанавливается шестивалентный хром до трехвалентного. Самым оптимальным показателем кислотность для реакции восстановления хрома является pH=2-2,5, поэтому при недостаточной кислотности раствора его дополнительно смешивают с концентрированными кислотами. Соответственно смешивание хромсодержащих стоков со стоками меньшей кислотности необоснованно и экономически невыгодно.

Также с целью экономии хромистые сточные воды после восстановления не следует нейтрализовать отдельно от остальных стоков. Их соединяют с остальными, включая циансодержащие, и подвергают общей нейтрализации. Для профилактики обратного окисления хрома за счет избытка хлора в цианистых стоках можно воспользоваться одним из двух способов – либо увеличить количество восстановителя в хромистых стоках, либо удалить избыточный хлор в цианистых стоках тиосульфатом натрия. Выпадение в осадок происходит при pH=8,5-9,5.

Очистка циансодержащих стоков

Цианиды являются очень токсичными веществами, поэтому технология и методы должны соблюдаться очень строго.

Производится в основной среде с участием газообразного хлора, хлорной извести, либо гипохлорита натрия. Окисление цианидов до цианатов происходит в 2 этапа с промежуточным образованием хлорциана – очень токсичного газа, при этом в очистной установке должны постоянно поддерживаться условия, когда скорость второй реакции превышает скорость первой:

Расчетным путем были выведены, а позже и подтверждены практически, следующие оптимальные условия для данной реакции: pH>8,5; t сточных вод < 50°C; концентрация цианидов в исходной сточной воде не выше 1 г/л.

Дальнейшая нейтрализация цианатов может выполняться двумя способами. Выбор способа будет зависеть от кислотности раствора:

  • при pH=7,5-8,5 осуществляется окисление до углекислого газа и газообразного азота;
  • при pH<3 производится гидролиз до солей аммония:

Важным условием для применения гипохлоритного метода обезвреживания цианидов является соблюдение их не выше 100-200 мг/л. Большая концентрация токсичного вещества в стоках требует предварительного понижения данного показателя путем разбавления.

Завершающим этапом очистки цианистых гальванических стоков выполняется удаление соединений тяжелых металлов и нейтрализация по показателю pH. Как уже отмечалось выше, нейтрализацию цианистых стоков рекомендуется выполнять совместно со стоками двух других видов – хромсодержащими и кислыми со щелочными. Гидроокиси кадмия, цинка, меди и прочих тяжелых металлов также целесообразнее выделять и удалять в виде взвесей на смешанных стоках.

Очистка разных стоков (кислых и щелочных)

Образуются при обезжиривании, травлении, никелировании, фосфатировании, лужении и прочем. В них не содержатся соединения циана или , то есть они не являются токсичными, а загрязняющими факторами в них выступают детергенты (поверхностно-активные моющие вещества) и эмульгированные жиры. Очистка кислых и щелочных сточных вод гальванических цехов заключается в их частично взаимной нейтрализации, а также в нейтрализации с помощью специальных реагентов, таких как растворы соляной или серной кислоты и известковое молоко. Вообще нейтрализацию стоков в данном случае правильней называть коррекцией pH, так как разные по кислотно-щелочному составу растворы в итоге будут приведены к среднему показателю кислотности.

Наличие ПАВ и масляно-жировых включений в растворах не мешает реакциям нейтрализации, но снижает общее качество очистки стоков, поэтому жиры удаляются из стоков методом фильтрования, а в качестве ПАВ необходимо применять только мягкие детергенты, которые способны биологически разлагаться.

Кислые и щелочные сточные воды после нейтрализации в составе смешанных стоков направляют направляются для осветления в отстойники или центрифуги. На этом завершается химический метод очистки стоков гальванических линий.

Кроме химического метода очистка гальванических стоков может осуществляться электрохимическим и ионообменным методами.

Рекомендуем почитать

Наверх