Как называется совокупность цифр. Малый математический факультет. Количественная оценка информации

Здоровье 22.11.2020

Основные понятия систем счисления

Система счисления - это совокупность правил и приемов записи чисел с помощью набора цифровых знаков. Количество цифр, необходимых для записи числа в системе, называют основанием системы счисления. Основание системы записывается в справа числа в нижнем индексе: ; ; и т. д.

Различают два типа систем счисления:

позиционные, когда значение каждой цифры числа определяется ее позицией в записи числа;

непозиционные, когда значение цифры в числе не зависит от ее места в записи числа.

Примером непозиционной системы счисления является римская: числа IX, IV, XV и т.д. Примером позиционной системы счисления является десятичная система, используемая повседневно.

Любое целое число в позиционной системе можно записать в форме многочлена:

где S - основание системы счисления;

Цифры числа, записанного в данной системе счисления;

n - количество разрядов числа.

Пример. Число запишется в форме многочлена следующим образом:

Виды систем счисления

Римская система счисления является непозиционной системой. В ней для записи чисел используются буквы латинского алфавита. При этом буква I всегда означает единицу, буква - V пять, X - десять, L - пятьдесят, C - сто, D - пятьсот, M - тысячу и т.д. Например, число 264 записывается в виде CCLXIV. При записи чисел в римской системе счисления значением числа является алгебраическая сумма цифр, в него входящих. При этом цифры в записи числа следуют, как правило, в порядке убывания их значений, и не разрешается записывать рядом более трех одинаковых цифр. В том случае, когда за цифрой с большим значением следует цифра с меньшим, ее вклад в значение числа в целом является отрицательным. Типичные примеры, иллюстрирующие общие правила записи чисел в римской система счисления, приведены в таблице.

Таблица 2. Запись чисел в римской системе счисления

III

VII

VIII

XIII

XVIII

XIX

XXII

XXXIV

XXXIX

XCIX

200

438

649

999

1207

CDXXXVIII

DCXLIX

CMXCIX

MCCVII

2045

3555

3678

3900

3999

MMXLV

MMMDLV

MMMDCLXXVIII

MMMCM

MMMCMXCIX

Недостатком римской системы является отсутствие формальных правил записи чисел и, соответственно, арифметических действий с многозначными числами. По причине неудобства и большой сложности в настоящее время римская система счисления используется там, где это действительно удобно: в литературе (нумерация глав), в оформлении документов (серия паспорта, ценных бумаг и др.), в декоративных целях на циферблате часов и в ряде других случаев.

Десятичня система счисления – в настоящее время наиболее известная и используемая. Изобретение десятичной системы счисления относится к главным достижениям человеческой мысли. Без нее вряд ли могла существовать, а тем более возникнуть современная техника. Причина, по которой десятичная система счисления стала общепринятой, вовсе не математическая. Люди привыкли считать в десятичной системе счисления, потому что у них по 10 пальцев на руках.

Древнее изображение десятичных цифр (рис. 1) не случайно: каждая цифра обозначает число по количеству углов в ней. Например, 0 - углов нет, 1 - один угол, 2 - два угла и т.д. Написание десятичных цифр претерпело существенные изменения. Форма, которой мы пользуемся, установилась в XVI веке.

Десятичная система впервые появилась в Индии примерно в VI веке новой эры. Индийская нумерация использовала девять числовых символов и нуль для обозначения пустой позиции. В ранних индийских рукописях, дошедших до нас, числа записывались в обратном порядке - наиболее значимая цифра ставилась справа. Но вскоре стало правилом располагать такую цифру с левой стороны. Особое значение придавалось нулевому символу, который вводился для позиционной системы обозначений. Индийская нумерация, включая нуль, дошла и до нашего времени. В Европе индусские приёмы десятичной арифметики получили распространение в начале ХIII в. благодаря работам итальянского математика Леонардо Пизанского (Фибоначчи). Европейцы заимствовали индийскую систему счисления у арабов, назвав ее арабской. Это исторически неправильное название удерживается и поныне.

Десятичная система использует десять цифр – 0, 1, 2, 3, 4, 5, 6, 7, 8 и 9, а также символы “+” и “–” для обозначения знака числа и запятую или точку для разделения целой и дробной частей числа.

В вычислительных машинах используется двоичная система счисления, её основание - число 2. Для записи чисел в этой системе используют только две цифры - 0 и 1. Вопреки распространенному заблуждению, двоичная система счисления была придумана не инженерами-конструкторами ЭВМ, а математиками и философами задолго до появления компьютеров, еще в ХVII - ХIХ веках. Первое опубликованное обсуждение двоичной системы счисления принадлежит испанскому священнику Хуану Карамюэлю Лобковицу (1670 г.). Всеобщее внимание к этой системе привлекла статья немецкого математика Готфрида Вильгельма Лейбница, опубликованная в 1703 г. В ней пояснялись двоичные операции сложения, вычитания, умножения и деления. Лейбниц не рекомендовал использовать эту систему для практических вычислений, но подчёркивал её важность для теоретических исследований. Со временем двоичная система счисления становится хорошо известной и получает развитие.

Выбор двоичной системы для применения в вычислительной технике объясняется тем, что электронные элементы - триггеры, из которых состоят микросхемы ЭВМ, могут находиться только в двух рабочих состояниях.

С помощью двоичной системы кодирования можно зафиксировать любые данные и знания. Это легко понять, если вспомнить принцип кодирования и передачи информации с помощью азбуки Морзе. Телеграфист, используя только два символа этой азбуки - точки и тире, может передать практически любой текст.

Двоичная система удобна для компьютера, но неудобна для человека: числа получаются длинными и их трудно записывать и запоминать. Конечно, можно перевести число в десятичную систему и записывать в таком виде, а потом, когда понадобится перевести обратно, но все эти переводы трудоёмки. Поэтому применяются системы счисления, родственные двоичной - восьмеричная и шестнадцатеричная. Для записи чисел в этих системах требуется соответственно 8 и 16 цифр. В 16-теричной первые 10 цифр общие, а дальше используют заглавные латинские буквы. Шестнадцатеричная цифра A соответствует десятеричному числу 10, шестнадцатеричная B – десятичному числу 11 и т. д. Использование этих систем объясняется тем, что переход к записи числа в любой из этих систем от его двоичной записи очень прост. Ниже приведена таблица соответствия чисел, записанных в разных системах.

Таблица 3. Соответствие чисел, записанных в различных системах счисления

Десятичная

Двоичная

Восьмеричная

Шестнадцатеричная

001

010

011

100

101

110

111

1000

1001

1010

1011

1100

1101

D http://viagrasstore.net/generic-viagra-soft/

1110

1111

10000

Правила перевода чисел из одной системы счисления в другую

Перевод чисел из одной системы счисления в другую составляет важную часть машинной арифметики. Рассмотрим основные правила перевода.

1. Для перевода двоичного числа в десятичное необходимо его записать в виде многочлена, состоящего из произведений цифр числа и соответствующей степени числа 2, и вычислить по правилам десятичной арифметики:

При переводе удобно пользоваться таблицей степеней двойки:

Таблица 4. Степени числа 2

n (степень)

1024

Пример. Число перевести в десятичную систему счисления.

2. Для перевода восьмеричного числа в десятичное необходимо его записать в виде многочлена, состоящего из произведений цифр числа и соответствующей степени числа 8, и вычислить по правилам десятичной арифметики:

При переводе удобно пользоваться таблицей степеней восьмерки:

Таблица 5. Степени числа 8

n (степень)

Системой счисления (СС) называют совокупность цифровых знаков и правил их записи, применяемую для однозначного изображения чисел. Различают позиционные и непозиционные системы счисления.

В непозиционных системах счисления значение каждой цифры не зависит от ее позиции в числе. В настоящее время непозиционные сис­темы счисления применяются редко и в основном для целей нумерации.

Непозиционной системой счисления является римская система. В ней применяются следующие цифры:

десятичные числа: 1 5 10 50 100 500 1000 и т. д.;

римские цифры: I V X L C D M и т. д.

Десятичное число 32 изображается в римской системе счисления так:

XXXII = X+X+X+I+I=32,

то есть несколько стоящих рядом одинаковых цифр суммируются. Если рядом стоят две разные цифры, то они могут либо суммироваться, либо вычитаться, например

ХХVI = X + X + V + I = 26 и IX = X – I = 9.

Арифметические действия с числами в непозиционных системах сложны.

В ЭВМ преимущественное применение получили позиционные систе­мы счисления, в которых значение каждой цифры находится в строгой зависимости от ее позиции в числе.

Основанием системы счисления называют количество различных цифр, применяемых в данной позиционной системе счисления. Всем из­вестна с детства десятичная система счисления, в которой применя­ется десять цифр.

Десятичная система счисления – не единственная позиционная система. Возможны позиционные системы счисления с любым основанием в виде целого числа. Примеры систем счисления приведены в таблице.

Особый интерес при изучении вычислительной техники представляют двоичная, восьмеричная и шестнадцатеричная системы счисления (таблица 4.1).

Таблица 4.1

Основание Система счисления Цифровые символы
двоичная 0, 1
троичная 0, 1, 2
четверичная 0, 1, 2, 3
пятеричная 0, 1, 2, 3, 4
восьмеричная 0, 1, 2, 3, 4, 5, 6, 7
десятичная 0, 1, 2, 3, 4, 5, 6, 7, 8, 9
двенадцатиричная 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B
шестнадцатеричная 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F

В общем случае в позиционной системе счисления по некоторому основанию число

X=a n– 1 a n– 2 … a 1 a 0 a – 1 a – 2 …a –m

X=a n– 1 b n –1 + a n– 2 b n –2 +…+ a 1 b 1 + a 0 b 0 + a –1 b –1 +a –m b m .


В этой общей форме a i – цифры, лежащие в диапазоне 0£a i <b ; n и m – количество разрядов в целой и дробной частях числа соответственно; b – основание системы счисления; b i – разрядный вес i -й цифры.

Запись числа в b -ичной системе счисления называют b -ичным кодом числа. Двоичный, восьмеричный и шестнадцатеричный коды десятичного числа, например, 19,375 выглядят следующим образом:

19,375 (10) =10011,011 (2) =23,3 (8) =13,6 (16) .

Десятичный индекс, сопровождающий число, указывает основание системы счисления. Индекс опускается, когда основание системы счисления известно из контекста.

В виде полиномов уже рассмотренное десятичное число 19,375 можно записать так:

19,375 (10) =10011,011 (2) =1×2 4 +0×2 3 +0×2 2 +1×2 1 +1×2 0 +0×2 –1 +1×2 –2 +1×2 –3 =

16+0+0+2+1+0+1/4+1/8.

19,375 (10) =23,3 (8) =2×8 1 +3×8 0 +3×8 –1 =16+3+3/8.

19,375 (10) =13,6 (16) =1×16 1 +3×16 0 +6×16 –1 =16+3+6/16.

Таблица 4.2 – Коды чисел в различных позиционных системах счисления

Десятичные Двоичные Восьмеричные Шестнадцатеричные
A B C D E F
1A 1B 1C 1D
1E 1F

Числа, записанные в недесятичных системах счисления, следует произносить не так, как в десятичной системе. Например, восьмеричное число 23,3 рекомендуется читать так: "два–три–запятая–три" в отличие от привычного для нас чтения десятичного числа 23,3, а именно двадцать три целых и три десятых".

Для ЭВМ наилучшей системой счисления оказалась двоичная из-за простоты технической реализации, наибольшей помехоустойчивости кодирования цифр, минимума затрат оборудования, простоты арифметических действий, наибольшего быстродействия ивозможности применения формального математического аппарата для синтеза и анализа вычислительных устройств. Десятичная система счисления удобнее для человека с точки зрения удобства работы, но сильно проигрывает двоич­ной по остальным требованиям. Оценим, например, затраты оборудова­ния для запоминания числа 5839 в десятичной системе. Нам потребу­ется четыре десятичных разряда по десять устойчивых состояний в каждом, то есть всего 40 устойчивых состояний. В двоичной системе счисления для этого же числа 5839, выраженного как 1 0110 1100 1111, достаточно иметь 13 разрядов на два устойчивых состояния в каждом – всего 26 устойчивых состояний, что примерно в 1,5 раза меньше.

Восьмеричная и шестнадцатеричная системы счисления в вычисли­тельной технике имеют вспомогательное значение. Запись чисел в этих системах получается более компактной и удобной для человека, чем в двоичной системе.

В машинах первого и второго поколений наибольшее распростране­ние получила восьмеричная система. Этому способствовало то, что в ней можно было пользоваться цифрами десятичной системы, не прибе­гая к каким-либо новым символам, что нельзя сделать при использо­вании шестнадцатеричной системы.

В машинах третьего и более поздних поколений вместо восьмеричной чаще стала использоваться шестнадцатеричная система, так как это унифицирует форматы числовой и командной информации и обеспечивает более корот­кие записи.

В ЭВМ третьего и более поздних поколений за основную единицу информации при­нят байт. Один байт равен 8 битам, то есть описывается восемью двоичными разрядами. В шестнадцатеричной системе для записи инфор­мации, содержащейся в одном байте, требуется 2 символа, а в вось­меричной – 3, причем старший разряд восьмеричного числа недоиспользуется.

Наука и жизнь // Иллюстрации

Наука и жизнь // Иллюстрации

Понятие о числе зародилось в глубокой древности, когда человек научился считать предметы: два дерева, семь быков, пять рыб . Сначала счёт вели на пальцах. В разговорной речи мы до сих пор иногда слышим: «Дай пять!», то есть подай руку. А раньше говорили: «Дай пясть!» Пясть - это рука, а на руке пять пальцев. Когда-то слово пять имело конкретное значение - пять пальцев пясти, то есть руки.

Позднее вместо пальцев для счёта начали использовать зарубки на палочках. А когда возникла письменность, для обозначения чисел стали употреблять буквы. Например, у славян буква А означала число «один» (Б не имело числового значения), В - два, Г - три, Д - четыре, Е - пять.

Постепенно люди стали осознавать числа независимо от предметов и лиц, которые могли подвергаться счёту: просто число «два» или число «семь». В связи с этим у славян появилось слово число . В значении «счёт, величина, количество» его начали употреблять в русском языке с ХI века. Наши предки использовали слово число и для указания на дату, год. С ХIII века оно стало обозначать ещё и дань, подать.

В старину в книжном русском языке наряду со словом число имело хождение существительное чисмя , а также прилагательное чисменый . В ХVI веке появился глагол числити - «считать».

Во второй половине ХV века в европейских странах получили распространение специальные знаки, обозначающие числа: 1, 2, 3, 4, 5, 6, 7, 8, 9, 0. Их изобрели индийцы, а в Европу они попали благодаря арабам, поэтому и получили название арабские цифры .

В нашей стране арабские цифры появились в Петровскую эпоху. В то же время в русский язык вошло слово цифра . Арабское по происхождению, оно тоже пришло к нам из европейских языков. У арабов первоначальное значение слова цифра - это нуль, пустое место. Именно в этом значении существительное цифра вошло во многие европейские языки, в том числе в русский. С середины ХVIII века слово цифра приобрело новое значение - знак числа.

Совокупность цифр в русском языке называлась цифирь (в старой орфографии цыфирь). Дети, изучавшие счёт, говорили: учу цифирь , пишу цифирь . (Вспомните учителя по фамилии Цыфиркин из комедии Дениса Ивановича Фонвизина «Недоросль», который обучал нерадивого Митрофанушку цифири , то есть арифметике.) При Петре I в России открыли цифирные школы - начальные государственные общеобразовательные учебные заведения для мальчиков. В них кроме других дисциплин детям преподавали цифирную науку - арифметику, математику.

Итак, слова число и цифра различаются и по значению и по происхождению. Число - единица счёта, выражающая количество (один дом, два дома, три дома и т.д.). Цифра - знак (символ), обозначающий значение числа. Для записи чисел мы используем арабские цифры - 1, 2, 3… 9, 0, а в некоторых случаях и римские - I, II, III, IV, V и т.д.

В наши дни слова число и цифра употребляются и в других значениях. Например, когда мы спрашиваем «Какое сегодня число?», то имеем в виду день месяца. Сочетания «в том числе », «из числа кого-нибудь», «в числе кого-то» обозначают состав, совокупность людей или предметов. А если мы доказываем что-то с цифрами в руках , то обязательно используем числовые показатели. Словом цифра называют также денежную сумму (цифра дохода, цифра гонорара ).

В разговорной речи слова число и цифра часто заменяют друг друга. Например, числом мы называем не только величину, но и знак, который её выражает. Об очень больших в числовом отношении величинах говорят астрономические числа или астрономические цифры .

Слово количество появилось в русском языке в XI веке. Оно пришло из старославянского языка и образовано от слова колико - «сколько». Существительное количество употребляется в применении ко всему, что поддаётся счёту и измерению. Это могут быть люди или предметы (количество гостей, количество книг ), а также количество вещества, которое мы не считаем, а измеряем (количество воды, количество песка ).

Число - это количественная характеристика чего-либо. Вначале числа обозначались чёрточками. Но это неудобно: попробуйте безошибочно на неразлинованной бумаге написать двести пятьдесят пять чёрточек. То-то! К счастью, в Индии была придумана десятичная система счисления, позволяющая записывать любое натуральное число при помощи всего десяти знаков!

Некоторые знаки и символы для обозначения что-либо 0 1 2 3 4 5 6 7 8 9 - + × ∙ * : / ∕ ÷ = ≈ ≠ 🙂 🙁 ☀️ 🌥️ 🌧️ 🍎 🍒 🍓 Некоторые математические символы 0 1 2 3 4 5 6 7 8 9 - + × ∙ * : / ∕ ÷ = ≈ ≠ Арабские цифры (всего 10) для обозначения чисел 0 1 2 3 4 5 6 7 8 9

Из чего состоит число

Однозначные числа состоят только из одной цифры 0 1 2 3 4 5 6 7 8 9 Двузначные числа состоят только из двух цифр 10 11 12 13 14 15 16 … 97 98 99 Трёхзначные числа состоят только из трёх цифр 100 101 102 103 104 105 106 … 997 998 999 Четырёхзначные числа состоят только из четырёх цифр 1000 1001 1002 1003 1004 1005 1006 … 9997 9998 9999 …

Для записи числа 255 (Двести пятьдесят пять) нужно всего две цифры: «2» и «5». Цифра «5» используется дважды. Первая правая цифра в числе обозначает количество единиц (пять чёрточек), вторая - количество десятков (пять раз по десять чёрточек), третья - количество сотен (два раза по сто чёрточек), четвёртая - количество тысяч и т. д.

255 (Двести пятьдесят пять)

2 5 5
| | | | | | | | | | | | | | | | | | | | | | | | |
| | | | | | | | | | | | | | | | | | | |
| | | | | | | | | | | | | | | | | | | |
| | | | | | | | | | | | | | | | | | | |
| | | | | | | | | | | | | | | | | | | |
| | | | | | | | | |
| | | | | | | | | |
| | | | | | | | | |
| | | | | | | | | |
| | | | | | | | | |
| | | | | | | | | |
| | | | | | | | | |
| | | | | | | | | |
| | | | | | | | | |
| | | | | | | | | |
| | | | | | | | | |
| | | | | | | | | |
| | | | | | | | | |
| | | | | | | | | |
| | | | | | | | | |

Числа состоят не только из цифр. Также, например, используется символы «минус» или «запятая», отделяющая дробную часть.

Чтение и произношение целых чисел и десятичных дробей

Двести пятьдесят пять целых одна сотая
2 5 5 , 0 1
Миллиарды Сотни миллионов Десятки миллионов Миллионы Сотни тысяч Десятки тысяч Тысячи Сотни Десятки Единицы Десятые Сотые Тысячные Десятитысячные Стотысячные Миллионные

После двадцати числа имеют составное наименование.

2 5 6 (Двести пятьдесят шесть )
2 0 0 (Двести )
5 0 ( Пятьдесят )
6 ( Шесть )
1 один 11 одиннадцать 10 десять 100 сто
2 два 12 двенадцать 20 двадцать 200 двести
3 три 13 тринадцать 30 тридцать 300 триста
4 четыре 14 четырнадцать 40 сорок 400 четыреста
5 пять 15 пятнадцать 50 пятьдесят 500 пятьсот
6 шесть 16 шестнадцать 60 шестьдесят 600 шестьсот
7 семь 17 семнадцать 70 семьдесят 700 семьсот
8 восемь 18 восемнадцать 80 восемьдесят 800 восемьсот
9 девять 19 девятнадцать 90 девяносто 900 девятьсот

Число проговаривается по три цифры с соответствующим классом. Можно озвучить очень большие числа.

256 (Двести пятьдесят шесть) 256 000 (Двести пятьдесят шесть тысяч ) 256 256 (Двести пятьдесят шесть тысяч двести пятьдесят шесть) 2 256 256 (Два миллиона двести пятьдесят шесть тысяч двести пятьдесят шесть)

В десятичных дробях произносится

  1. число до запятой,
  2. слово «целых» или «целая» (подразумевается «целая единица»),
  3. число после запятой,
  4. разряд крайней справа цифры (подразумевается «часть единицы»).
256,01 (Двести пятьдесят шесть целых единиц одна сотая часть единицы)

В бесконечных периодических десятичных дробях произносится

  1. число до запятой,
  2. слово «целых» или «целая»,
  3. число после запятой до периода,
  4. разряд крайней справа цифры перед периодом,
  5. слово «и»,
  6. число периода,
  7. слово «в периоде»
5,(6) (Пять целых и шесть в периоде) 0,1(15) (Ноль целых одна десятая и пятнадцать в периоде)

Классическая запись чисел римскими цифрами

=

До арабских цифр использовали римские цифры. Чтобы не сбиться со счёта при написании чёрточек, выделяли сначала каждую пятую, а затем и каждую десятую чёрточку. Со временем запись «| | | | V | | | | X | | | | V | | | | X | | | | V |» уменьшилась до «XXVI».

I V X L C D M
1 5 10 50 100 500 1000

Римские цифры, которые имеют большее значение, стоят в числе левее тех, у кого значение меньше. Их значения складываются (VI = 5 + 1 = 6). Цифры «V», «L», «D» не повторяются.

Исключения: с XIX века сочетания «IV», «IX», «XL», «XC», «CD», «CM». Во избежание четырёхкратного повторения одной цифры (неверно: «IIII»), в них цифра с большим значением стоит правее цифры с меньшим значением и из большего значения вычитается меньшее (IV = 5 - 1 = 4).

I один X десять C сто M одна тысяча
II два XX двадцать CC двести MM две тысячи
III три XXX тридцать CCC триста MMM три тысячи
IV четыре XL сорок CD четыреста
V пять L пятьдесят D пятьсот
VI шесть LX шестьдесят DC шестьсот
VII семь LXX семьдесят DCC семьсот
VIII восемь LXXX восемьдесят DCCC восемьсот
IX девять XC девяносто CM девятьсот
CC L VI (Двести пятьдесят шесть )
CC (Двести )
L ( Пятьдесят )
VI ( Шесть )

Какими бывают числа (школьная программа)

Натуральные числа - это целые положительные числа, возникшие при счёте предметов 1 2 3 … 98 99 100 … Простые числа - это натуральные числа, которые делятся без остатка только на два натуральных числа: 1 и само себя (единица не является простым числом) 2 (2/2 = 1 2/1 = 2) 3 5 … 83 89 97 … Составные числа - это натуральные числа, которые делятся без остатка на три и более натуральных числа (единица не является составным числом) 4 (4/4 = 1 4/2 = 2 4/1 = 4) 6 8 … 98 99 100 … Круглые числа - это натуральные числа, которые оканчиваются на 0 10 20 30 … 100 … Целые числа - это натуральные числа, ноль и числа, противоположные натуральным (отрицательные) … -100 -99 -98 … -2 -1 0 1 2 … 98 99 100 … Чётные числа - это целые числа, которые делятся на число 2 без остатка … -100 -98 -96 … -4 -2 0 2 4 … 96 98 100 … Нечётные числа - это целые числа, которые не делятся на число 2 без остатка … -99 -97 -95 … -3 -1 1 3 … 95 97 99 … Вещественные числа - это рациональные и иррациональные числа … -100,5 … -5,(6) … -3 … -2 , где числитель m - целое число, а знаменатель n - натуральное число … -100,5 … -5,(6) … -3 … -2 или ±m/n, где n ≠ 0 … -
201
2
… -
17
3
… -
3
1
… -
14
5
… -
4
2
… -
5
5
… -
6
7
… -
114
990
… -
1
500
… -
1
1000
0
98
1
1000
… … -5 … - … -
17
3
… -
3
1
… -
14
5
… -
4
2
… -
5
5
5
5
4
2
14
5
3
1
17
3
201
2
… Десятичная дробь - это дробь, представленная в десятичной записи, так как n = 10 z , где z - натуральное число … -100,5 … -5,6666666666… … -2,8 … -0,8571428571… … -0,1151515151… … -0,002 … -0,001 … 0,001 … 0,002 … 0,1(15) … 0,(857142) … 1,4142135623… … 1,6180339887… … 2,7182818284… … 2,8 … 3,1415926535… … 5,(6) … 100,5 … Конечная десятичная дробь имеет конечное количество цифр после запятой … -100,5 … -2,8 … -0,002 … -0,001 … 0,001 … 0,002 … 2,8 … 100,5 … Бесконечная десятичная дробь не имеет конечное количество цифр после запятой … -5,6666666666… … -0,8571428571… … -0,1151515151… … 0,1(15) … 0,(857142) … 1,4142135623… … 1,6180339887… … 2,7182818284… … 3,1415926535… … 5,(6) … Бесконечная периодическая десятичная дробь - дробь, у которой начиная с некоторого места после запятой нет иных символов, кроме периодически повторяющейся группы цифр … -5,6666666666… … -0,8571428571… … -0,1151515151… … 0,1(15) … 0,(857142) … 5,(6) … Бесконечная непериодическая десятичная дробь … 1,4142135623… … 1,6180339887… … 2,7182818284… … 3,1415926535… … Положительные числа - это числа, которые больше нуля (ноль не является положительным числом) … 0,001 … 0,002 … 0,1(15) … … -2 … -1 … -
6
7
… -0,1(15) … -0,002 … -0,001 …

Числа и цифры

Понятие о числе зародилось в глубокой древности, когда человек научился считать предметы: два дерева, семь быков, пять рыб . Сначала счёт вели на пальцах. В разговорной речи мы до сих пор иногда слышим: «Дай пять!», то есть подай руку. А раньше говорили: «Дай пясть!» Пясть - это рука, а на руке пять пальцев. Когда-то слово пять имело конкретное значение - пять пальцев пясти, то есть руки.

Позднее вместо пальцев для счёта начали использовать зарубки на палочках. А когда возникла письменность, для обозначения чисел стали употреблять буквы. Например, у славян буква А означала число «один» (Б не имело числового значения), В - два, Г - три, Д - четыре, Е - пять.

Постепенно люди стали осознавать числа независимо от предметов и лиц, которые могли подвергаться счёту: просто число «два» или число «семь». В связи с этим у славян появилось слово число . В значении «счёт, величина, количество» его начали употреблять в русском языке с ХI века. Наши предки использовали слово число и для указания на дату, год. С ХIII века оно стало обозначать ещё и дань, подать.

В старину в книжном русском языке наряду со словом число имело хождение существительное чисмя , а также прилагательное чисменый . В ХVI веке появился глагол числити - «считать».

Во второй половине ХV века в европейских странах получили распространение специальные знаки, обозначающие числа: 1, 2, 3, 4, 5, 6, 7, 8, 9, 0. Их изобрели индийцы, а в Европу они попали благодаря арабам, поэтому и получили название арабские цифры .

В нашей стране арабские цифры появились в Петровскую эпоху. В то же время в русский язык вошло слово цифра . Арабское по происхождению, оно тоже пришло к нам из европейских языков. У арабов первоначальное значение слова цифра - это нуль, пустое место. Именно в этом значении существительное цифра вошло во многие европейские языки, в том числе в русский. С середины ХVIII века слово цифра приобрело новое значение - знак числа.

Совокупность цифр в русском языке называлась цифирь (в старой орфографии цыфирь). Дети, изучавшие счёт, говорили: учу цифирь , пишу цифирь . (Вспомните учителя по фамилии Цыфиркин из комедии Дениса Ивановича Фонвизина «Недоросль», который обучал нерадивого Митрофанушку цифири , то есть арифметике.) При Петре I в России открыли цифирные школы - начальные государственные общеобразовательные учебные заведения для мальчиков. В них кроме других дисциплин детям преподавали цифирную науку - арифметику, математику.

Итак, слова число и цифра различаются и по значению и по происхождению. Число - единица счёта, выражающая количество (один дом, два дома, три дома и т.д.). Цифра - знак (символ), обозначающий значение числа. Для записи чисел мы используем арабские цифры - 1, 2, 3… 9, 0, а в некоторых случаях и римские - I, II, III, IV, V и т.д.

В наши дни слова число и цифра употребляются и в других значениях. Например, когда мы спрашиваем «Какое сегодня число?», то имеем в виду день месяца. Сочетания «в том числе », «из числа кого-нибудь», «в числе кого-то» обозначают состав, совокупность людей или предметов. А если мы доказываем что-то с цифрами в руках , то обязательно используем числовые показатели. Словом цифра называют также денежную сумму (цифра дохода, цифра гонорара ).

В разговорной речи слова число и цифра часто заменяют друг друга. Например, числом мы называем не только величину, но и знак, который её выражает. Об очень больших в числовом отношении величинах говорят астрономические числа или астрономические цифры .

Слово количество появилось в русском языке в XI веке. Оно пришло из старославянского языка и образовано от слова колико - «сколько». Существительное количество употребляется в применении ко всему, что поддаётся счёту и измерению. Это могут быть люди или предметы (количество гостей, количество книг ), а также количество вещества, которое мы не считаем, а измеряем (количество воды, количество песка ).

Доктор филологических наук Наталия Черникова

http://www.nkj.ru/archive/articles/17798/

Рекомендуем почитать

Наверх